Generation of Escherichia coli nitroreductase mutants conferring improved cell sensitization to the prodrug CB1954.
نویسندگان
چکیده
Escherichia coli nitroreductase (NTR) activates the prodrug CB1954 to a cytotoxic derivative, allowing selective sensitization of NTR-expressing cells or tumors to the prodrug. This is one of several enzyme-prodrug combinations that are under development for cancer gene therapy, and the system has now entered clinical trials. Enhancing the catalytic efficiency of NTR for CB1954 could improve its therapeutic potential. From the crystal structure of an enzyme-ligand complex, we identified nine amino acid residues within the active site that could directly influence prodrug binding and catalysis. Mutant libraries were generated for each of these residues and clones screened for their ability to sensitize E. coli to CB1954. Amino acid substitutions at six positions conferred markedly greater sensitivity to CB1954 than did the WT enzyme; the best mutants, at residue F124, resulted in approximately 5-fold improvement. Using an adenovirus vector, we introduced the F124K NTR mutant into human SK-OV-3 ovarian carcinoma cells and showed it to be approximately 5-fold more potent in sensitizing the cells to CB1954 at the clinically relevant prodrug concentration of 1 micro M than was the WT enzyme. Enhanced mutant NTRs such as F124K should improve the efficacy of the NTR/CB1954 combination in cancer gene therapy.
منابع مشابه
Combined antitumor activity of the nitroreductase/CB1954 suicide gene system and γ-rays in HeLa cells in vitro
Escherichia coli nitroreductase (NTR) may convert the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) into a bifunctional alkylating agent, which may lead to DNA crosslinks and the apoptosis of cancer cells. NTR/CB1954 has been demonstrated to be an effective gene therapy in cancer cells. The present study examined whether the NTR/CB1954 suicide gene system had cytotoxic effects on HeLa...
متن کاملThe Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy
Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrob...
متن کاملMechanism of CB1954 reduction by Escherichia coli nitroreductase.
NTR (nitroreductase NfsB from Escherichia coli) is a flavoprotein with broad substrate specificity, reducing nitroaromatics and quinones using either NADPH or NADH. One of its substrates is the prodrug CB1954 (5-[aziridin-1-yl]-2,4-dinitrobenzamide), which is converted into a cytotoxic agent; so NTR/CB1954 has potential for use in cancer gene therapy. However, wild-type NTR has poor kinetics an...
متن کاملLate expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954.
We have constructed an oncolytic adenovirus expressing the Escherichia coli nitroreductase gene nfsB from an internal ribosome entry site (IRES) in the adenovirus L5 major late transcript. The virus (Tcf-NTR) has Tcf transcription factor-binding sites in the E1A, E1B, and E4 promoters, which restrict viral replication to cells that have activation of the Wnt signaling pathway. This virus was co...
متن کاملThe gene suicide system Ntr/CB1954 causes ablation of differentiated 3T3L1 adipocytes by apoptosis.
The feasibility of ablating differentiated adipocytes and the mechanism of cell ablation with a suitable prodrug activating system is described. The system is based on the use of E. coli nitroreductase (NTR) enzyme that activates certain nitro compounds, such as the antitumor drug CB1954, into cytotoxic DNA interstrand cross-linking agents. Differentiated preadipocyte cells (3T3L1) transfected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 17 شماره
صفحات -
تاریخ انتشار 2003